RadarDaily Home Page
CHIP TECH
Chip-based system for terahertz waves could enable more efficient, sensitive electronics
illustration only
Chip-based system for terahertz waves could enable more efficient, sensitive electronics
by Adam Zewe | MIT News
Boston MA (SPX) Mar 06, 2025

The use of terahertz waves, which have shorter wavelengths and higher frequencies than radio waves, could enable faster data transmission, more precise medical imaging, and higher-resolution radar.

But effectively generating terahertz waves using a semiconductor chip, which is essential for incorporation into electronic devices, is notoriously difficult.

Many current techniques can't generate waves with enough radiating power for useful applications unless they utilize bulky and expensive silicon lenses. Higher radiating power allows terahertz signals to travel farther. Such lenses, which are often larger than the chip itself, make it hard to integrate the terahertz source into an electronic device.

To overcome these limitations, MIT researchers developed a terahertz amplifier-multiplier system that achieves higher radiating power than existing devices without the need for silicon lenses.

By affixing a thin, patterned sheet of material to the back of the chip and utilizing higher-power Intel transistors, the researchers produced a more efficient, yet scalable, chip-based terahertz wave generator.

This compact chip could be used to make terahertz arrays for applications like improved security scanners for detecting hidden objects or environmental monitors for pinpointing airborne pollutants.

"To take full advantage of a terahertz wave source, we need it to be scalable. A terahertz array might have hundreds of chips, and there is no place to put silicon lenses because the chips are combined with such high density. We need a different package, and here we've demonstrated a promising approach that can be used for scalable, low-cost terahertz arrays," says Jinchen Wang, a graduate student in the Department of Electrical Engineering and Computer Science (EECS) and lead author of a paper on the terahertz radiator.

He is joined on the paper by EECS graduate students Daniel Sheen and Xibi Chen; Steven F. Nagle, managing director of the T.J. Rodgers RLE Laboratory; and senior author Ruonan Han, an associate professor in EECS, who leads the Terahertz Integrated Electronics Group. The research will be presented at the IEEE International Solid-States Circuits Conference.

Making waves

Terahertz waves sit on the electromagnetic spectrum between radio waves and infrared light. Their higher frequencies enable them to carry more information per second than radio waves, while they can safely penetrate a wider range of materials than infrared light.

One way to generate terahertz waves is with a CMOS chip-based amplifier-multiplier chain that increases the frequency of radio waves until they reach the terahertz range. To achieve the best performance, waves go through the silicon chip and are eventually emitted out the back into the open air.

But a property known as the dielectric constant gets in the way of a smooth transmission.

The dielectric constant influences how electromagnetic waves interact with a material. It affects the amount of radiation that is absorbed, reflected, or transmitted. Because the dielectric constant of silicon is much higher than that of air, most terahertz waves are reflected at the silicon-air boundary rather than being cleanly transmitted out the back.

Since most signal strength is lost at this boundary, current approaches often use silicon lenses to boost the power of the remaining signal.

The MIT researchers approached this problem differently.

They drew on an electromechanical theory known as matching. With matching, they seek to equal out the dielectric constants of silicon and air, which will minimize the amount of signal that is reflected at the boundary.

They accomplish this by sticking a thin sheet of material which has a dielectric constant between silicon and air to the back of the chip. With this matching sheet in place, most waves will be transmitted out the back rather than being reflected.

A scalable approach

They chose a low-cost, commercially available substrate material with a dielectric constant very close to what they needed for matching. To improve performance, they used a laser cutter to punch tiny holes into the sheet until its dielectric constant was exactly right.

"Since the dielectric constant of air is 1, if you just cut some subwavelength holes in the sheet, it is equivalent to injecting some air, which lowers the overall dielectric constant of the matching sheet," Wang explains.

In addition, they designed their chip with special transistors developed by Intel that have a higher maximum frequency and breakdown voltage than traditional CMOS transistors.

"These two things taken together, the more powerful transistors and the dielectric sheet, plus a few other small innovations, enabled us to outperform several other devices," he says.

Their chip generated terahertz signals with a peak radiation power of 11.1 decibel-milliwatts, the best among state-of-the-art techniques. Moreover, since the low-cost chip can be fabricated at scale, it could be integrated into real-world electronic devices more readily.

One of the biggest challenges of developing a scalable chip was determining how to manage the power and temperature when generating terahertz waves.

"Because the frequency and the power are so high, many of the standard ways to design a CMOS chip are not applicable here," Wang says.

The researchers also needed to devise a technique for installing the matching sheet that could be scaled up in a manufacturing facility.

Moving forward, they want to demonstrate this scalability by fabricating a phased array of CMOS terahertz sources, enabling them to steer and focus a powerful terahertz beam with a low-cost, compact device.

This research is supported, in part, by NASA's Jet Propulsion Laboratory and Strategic University Research Partnerships Program, as well as the MIT Center for Integrated Circuits and Systems. The chip was fabricated through the Intel University Shuttle Program.

Related Links
Research Laboratory of Electronics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Light from engineered quantum structures
Berlin, Germany (SPX) Mar 06, 2025
Quantum physics often deals with entities so small that specialized microscopes are needed to observe them. However, researchers at the Institute for Atomic and Subatomic Physics at TU Wien are working with quantum structures large enough to be seen with the naked eye-albeit with some effort. These superconducting circuits, which can span hundreds of micrometers, function as artificial atoms with tunable properties, allowing precise control over quantum phenomena. Unlike natural atoms, which posse ... read more

CHIP TECH
Sweden to send Gripen jets to help patrol Polish airspace

South Korea air force jet accidentally drops bombs, injures civilians

Taiwan training jets resume flights after crash; Philippine fighter wreckage, crew bodies found

Philippine Air Force fighter goes missing during 'tactical' operation

CHIP TECH
Kim Jong Un's sister warns of provocative response to U.S. aircraft carrier deployment

China unapologetic after live firing drills off Australian coast

New Zealand raises China's surprise warship drills in high-level talks

Former sailor admits to plotting attack on Naval Station Great Lakes

CHIP TECH
Chip based microcombs boost gps precision

Unlocking the future of satellite navigation with smart techniques

ESA advances optical technology for next-generation navigation

Galileo ground stations undergo systemwide migration

CHIP TECH
Eyes in the Sky: Kanyini's First Images Mark Milestone for SA Satellite

Fleet Space Expands Exploration Capabilities with Acquisition of HiSeis

China launches two new satellites

Proposed 'weather control' bans surge across US states

CHIP TECH
ESA advances HydRON project for next-generation space communications

Airbus awarded Oberon satellites contract by UK MOD

Satellogic and Telespazio Brasil to provide low-latency satellite imagery for the Brazilian Air Force

Mobix Labs Secures Defense Funding to Advance SATCOM SoC Innovation

CHIP TECH
US approves sale of $3 bn in munitions, bulldozers to Israel

Denmark and Norway to 'increase cooperation' on defence

Eight soldiers killed in Colombia road accident

Shipment of 'heavy' US bombs arrives in Israel: defence ministry

CHIP TECH
Germany's proposed defence and infrastructure bonanza: how and why?

US Department of Veterans Affairs to cut more than 70,000 jobs

Germany set for massive rearmament as divide with US widens

Germany's Merz vows billions for defence, economy

CHIP TECH
Maxar Space Systems Ships First Tranche 1 Tracking Layer Spacecraft to L3Harris

Proliferating Space-Based Missile Tracking to Counter Emerging Threats

Canada willing to join US 'Iron Dome' missile shield: minister

Russia slams Trump plan for 'Star Wars' missile shield

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.